Gestão inteligente de parcelamentos do solo: um novo projeto QGIS para consulta externa Relatório: "As Melhores Práticas de Estágio na Prefeitura de São Paulo" (2025)

RESUMO

Esta iniciativa foi desenvolvida na Secretaria Municipal de Urbanismo e Licenciamento (SMUL) e tem como objetivo aperfeiçoar o acesso externo aos dados de parcelamentos do solo do município de São Paulo, por meio da padronização, automação e estruturação relacional da base de dados geoespacial no software QGIS. Esta proposta se integra na transformação digital da cidade, contribuindo para uma gestão territorial mais inteligente e decisões baseadas em dados espaciais. Entre os principais resultados estão a redução do tempo de consulta, o aumento da confiabilidade e coerência dos dados e a melhora da eficiência técnica. Essa iniciativa fortalece a gestão urbana e qualifica o acesso e uso das informações geoespaciais no setor público.

Palavras-chave: parcelamento do solo, QGIS, cidade inteligente.

INTRODUÇÃO

Este trabalho tem como objetivo disponibilizar e ampliar o acesso de agentes internos e externos à Secretaria Municipal de Urbanismo e Licenciamento (SMUL) aos dados de parcelamento do solo, a partir da organização dos dados e criação de ambiente amigável ao usuário. Esse aprimoramento será realizado por meio do uso do software QGIS, utilizado para Sistemas de Informação Geográfica (SIG), e da reorganização da base de dados. Atualmente, a falta de padronização compromete a agilidade e a precisão das análises técnicas realizadas pela secretaria e órgãos externos, impactando a eficiência do serviço público. Além disso, a disponibilização dessas informações de forma acessível subsidia o trabalho de quem depende desses dados para realizar seus ofícios.

Foram identificados dois principais problemas: (i) a dificuldade de integração e leitura dos dados relativos ao parcelamento do solo e (ii) a falta de um meio de consulta externa único e acessível. Nesse contexto, os atores e os beneficiários diretamente envolvidos são os servidores municipais, especialmente aqueles que necessitam das informações de parcelamento do solo para realizar suas atividades. Ao propor fluidez na leitura dos dados de parcelamento do solo, através de uma consulta simples e acessível, os servidores ganharão eficiência e agilidade no exercício de seus ofícios. Além disso, os munícipes de São Paulo também são beneficiários indiretos, uma vez que serão atendidos por uma gestão mais ágil e eficaz.

Desse modo, o projeto está alinhado às legislações que regem o município de São Paulo, em especial ao Plano Diretor Estratégico (PDE), Lei nº 16.050/2014, plano municipal vigente com o qual este trabalho está diretamente articulado, com base nos princípios e diretrizes nele estabelecidos, em especial os artigos 1º, 3º e 5º.

O artigo 1º do PDE define a Política de Desenvolvimento Urbano como o conjunto de planos e ações voltados ao pleno exercício das funções sociais da cidade, assegurando qualidade de vida e bem-estar. Também institui o Sistema de Planejamento Urbano, formado por órgãos, normas e recursos voltados à modernização e dinamização da gestão, exatamente o que este projeto propõe, ao criar uma ferramenta externa de consulta mais eficiente e acessível.

O artigo 3º reforça o papel integrador do PDE, ao estabelecer sua articulação com outras normas municipais, especialmente com a Lei de Parcelamento, Uso e Ocupação do Solo (LPUOS), principal instrumento de regulação do uso do solo. Este projeto materializa essa articulação ao conectar, na prática, dados do parcelamento urbano ao planejamento territorial.

Já o artigo 5º apresenta princípios como a função social da cidade, o direito à cidade e a gestão democrática. Ao padronizar, reorganizar e compartilhar dados do parcelamento do solo, o projeto fortalece decisões públicas baseadas em evidências e amplia a transparência e o acesso à informação, contribuindo diretamente para uma gestão urbana mais justa e qualificada.

Dessa forma, ao considerar o PDE, o projeto mostra alinhamento às diretrizes centrais da política urbana municipal, inserindo-se no processo de transformação da cidade por meio da ação coordenada, técnica e eficiente da administração pública.

OBJETIVOS

O objetivo deste projeto é aperfeiçoar o banco de dados de parcelamento do solo do município de São Paulo, por meio da padronização e reorganização das informações, e disponibilizá-los externamente para outros departamentos da secretaria e da Prefeitura como um todo. A iniciativa busca trazer maior eficiência administrativa e contribuir para uma gestão urbana mais eficaz.

Assim, os objetivos específicos são: padronizar o banco de dados relacionado às plantas de parcelamento do solo; integrar as informações de parcelamento no QGIS e automatizar os processos de visualização das informações; disponibilizar esse novo projeto para a consulta externa e avaliar a efetividade da iniciativa em conjunto com os técnicos.

DIAGNÓSTICO DO PROBLEMA / DESCRIÇÃO DA SITUAÇÃO INICIAL

Foram identificados quatro meios distintos de consulta externas, que estavam desatualizados. As informações estavam despadronizadas, a estrutura das tabelas do banco de dados era desuniforme, cada parcelamento tinha uma diferente organização de seus dados, sem padronização nos nomes das colunas, na categorização e preenchimento de dados. No total, havia 46 tabelas, o que gerava consequências como a falta de interoperabilidade dos dados com outros bancos da prefeitura e a falta de fluidez na busca de dados e no desenvolvimento do trabalho técnico, comprometendo a coerência e confiabilidade dos dados.

Além disso, foi percebido um ambiente de trabalho poluído e com muitos ruídos operacionais nas interfaces dos antigos projetos no QGIS - por exemplo, havia um grande número de camadas que não eram utilizadas em análises técnicas, portanto poderiam ser agrupadas e ocultas, deixando assim, um projeto mais coeso, tal como estabelecido nos objetivos.

O diagnóstico realizado pela equipe técnica demonstrou que o tempo de consulta a essas informações era elevado, justamente por causa da despadronização e pelo grande número de ações - no QGIS, são interações que agem sobre feições de determinadas camadas, a fim de realizar ações específicas com base nos dados da feição - as quais também apresentavam uma organização diferente para cada tipo de parcelamento.

Em vista desse diagnóstico, mostrou-se necessária a reestruturação completa de um novo projeto para consulta externa. Desse modo, garante-se a interoperabilidade entre os setores da prefeitura e eficiência do trabalho dos técnicos.

CONCEITOS E/OU MELHORES PRÁTICAS DE REFERÊNCIA

A atualização e a otimização de forma mais organizada dos dados fazem com que este projeto seja um exemplo de Tecnologias de Informação e Comunicação (TIC) na gestão pública. As TIC referem-se aos recursos tecnológicos utilizados para estruturar, integrar e disponibilizar dados de forma eficiente. Segundo Pereira e Silva (2020), o uso das TIC na administração pública tem como objetivo a melhoria contínua da qualidade dos serviços, bem como o aumento da eficiência e da eficácia dos atos administrativos.

No campo da gestão urbana e territorial, a tecnologia de bancos de dados tem desempenhado um papel fundamental para os SIG e ferramentas voltadas à administração pública - é nesse encontro que o projeto está inserido. Ele está alinhado ao modelo dos bancos de dados relacionais, nos quais os dados são organizados em tabelas que relacionam-se entre si (Queiroz,

2015). Desse modo, nossa proposta representa um avanço ao integrar, em uma estrutura relacional, diferentes conjuntos de dados vinculados a atributos geoespaciais, resultando em um banco de dados geoespacial eficiente.

Além disso, o projeto dialoga com a Lei nº 16.402/2016 (LPUOS), que estabelece parâmetros urbanísticos e incentiva o planejamento territorial com base em informações técnicas sistematizadas. Também dialoga com o Decreto nº 57.770/2017, que regulamenta o SIG do município, reforçando a importância da padronização dos dados de parcelamento do solo e da gestão integrada por meio de sistemas georreferenciados. Esses marcos normativos, em conjunto com o PDE, reforçam a proposta do projeto.

Para otimizar os serviços realizados pela secretaria que necessitam de consulta sobre os dados de parcelamentos da cidade, acredita-se que a aplicação de uma gestão em rede seria adequada, visto que esse tipo de gestão traz consigo uma noção de cooperação, flexibilidade e organicidade entre os departamentos, de forma integrada (Reck; Bitencourt, 2016; Rocha, 2017). Logo, não haveria mais uma organização tradicional em setores, os quais as informações se encontram individualizadas. Com a atualização do presente projeto, pretende-se implementar uma maior dinamização e cooperação voltadas ao objetivo de disponibilizar e tornar mais fácil o acesso a um banco de dados geoespacial.

É necessária uma maior aplicação de tecnologias em setores de tomadas de decisões, uma vez que as cidades e regiões metropolitanas encontram-se afetadas por processos de revoluções tecnológicas. Sendo assim, a digitalização de espaços físicos - formação de uma cartografia digital - pode se mostrar como um alicerce para a formação de uma nova maneira de gestão, baseada em inovadoras formas de processamento de informações.

Assim, para que uma cidade saia do estilo tradicional e passe a ser caracterizada como uma cidade inteligente, é necessário transformar seus serviços, passando de estruturas setorizadas para sistemas interoperáveis. Essa mudança proporciona uma maior conectividade interna entre agências e departamentos (Weiss; Bernardes; Consoni, 2017). O projeto também está alinhado aos objetivos da Carta Brasileira para Cidades Inteligentes (2020), principalmente ao Objetivo Estratégico nº 3, que visa "estabelecer sistemas de governança de dados e de tecnologias, com transparência, segurança e privacidade".

Além disso, as cidades inteligentes somam os fatores que compõem cidades digitais ao desenvolvimento sustentável, aliando-se a investimentos sociais e infraestrutura tecnológica para

promover qualidade de vida e gestão eficiente dos recursos. Têm foco na inovação, integração de setores e participação cidadã, utilizando a tecnologia como ferramenta para o desenvolvimento sustentável (Araújo et al., 2020).

Este trabalho se insere nesse contexto por se propor como meio de alcançar a interoperabilidade entre setores da administração pública, por meio do uso de um banco de dados geoespaciais reorganizado, padronizado e automatizado. O projeto contribui para a modernização da gestão municipal ao facilitar o acesso de informações sobre parcelamento do solo, e, também, contribui para uma cidade mais inteligente.

DESENVOLVIMENTO

O desenvolvimento do projeto seguiu uma sequência lógica de etapas, sendo elas: (1) a reformulação do banco de dados, com tabelas relacionadas de forma estruturada e consistente; (2) a organização e repaginação das simbologias dos elementos que constam nas camadas do projeto QGIS; (3) a automação de processos de análise, com a criação de novas ações e plug-ins e (4) criação de um formulário que unifique as informações do setor.

Na primeira etapa, foi realizado um redesenho do banco de dados. Um estudo detalhado permitiu estruturar as tabelas de forma relacionada, reduzindo o número de 46 tabelas para 8. As tabelas resultantes foram divididas em uma tabela de referência e sete tabelas de detalhes, categorizadas da seguinte forma:

- Tabela 0 (Tabela de referência) Identificação: contém as informações principais que permitem caracterizar e localizar cada parcelamento do solo;
- Tabela 1 Processo administrativo principal: elenca o processo administrativo principal do parcelamento, incluindo número do alvará, datas relevantes, legislações que amparam as decisões, TVEO e processos relacionados;
- Tabela 2 Processos relacionados: elenca os processos administrativos relacionados ao parcelamento, com seus respectivos números de alvará, datas e legislações aplicáveis;
- Tabela 3 Registro: cadastro dos registros cartoriais referentes ao parcelamento (como registro, matrícula, transcrição, averbação) e de restrições contratuais;
- Tabela 4 Levantamento de áreas: apresenta o levantamento das áreas por categoria,
 conforme consta nas plantas aprovadas e cadastradas;
- Tabela 5 Relação entre parcelamentos: indica o relacionamento entre diferentes parcelamentos;

- Tabela 6 Documentos: indica a documentação associada a cada parcelamento;
- Tabela 7 Plantas: indica as plantas associadas a cada parcelamento.

Essa nova reestruturação do banco de dados está alinhada ao modelo dos bancos de dados relacionais (Queiroz, 2015). Nesse tipo de modelo, a linguagem SQL (Structured Query Language) é utilizada para consultar e manipular os dados, e o software que facilitou esse processo e permitiu melhor administração desses dados foi o PostgreSQL e PostGIS, seguindo o padrão PRODAM-SP (Empresa de Tecnologia da Informação e Comunicação do Município de São Paulo).

O segundo passo foi inserir os dados em um novo projeto no QGIS. Nessa etapa, foram adicionadas camadas vetorizadas, tanto com informações externas via WFS (2025), extraídas do Geosampa de forma online, para que os dados estejam sempre atualizados, quanto com informações internas, obtidas do banco de dados interno da divisão gerenciado pelo PostgreSQL. Também foram adicionadas as tabelas mencionadas anteriormente. Assim, as camadas, na interface do projeto QGIS, ficaram organizadas em quatro grupos principais:

- 00_TOPO: contém as camadas com os limites das subprefeituras, distritos e logradouros, refere-se a dados externos.
- 01_PARCELAMENTOS: agrupa as tabelas e contém os dados internos. A tabela 0 refere-se a camada vetorizada com as feições dos parcelamentos, com áreas urbanizadas (AU), arruamento (ARR), desmembramento de gleba (DG), diretrizes (DZ), passagens (PS) e conjuntos (CJ). As tabelas de 1 a 7 complementam as informações de forma detalhada e categorizada.
- 02_CAMADAS EXTERNAS: reúne camadas vetorizadas sobre loteamento irregular, lote, quadra e setor fiscal.
- 99_BASE: grupo reservado para informações adicionais e para a visualização do Google Satellite, obtido via complemento HCMGIS, essa camada permite a visualização de imagens de satélite atualizadas diretamente no QGIS.

Com a nova organização das camadas e a reestruturação visual, conforme detalhado no capítulo de Resultados Alcançados ou Esperados, percebe-se nas Figura 5 e 6 que o projeto está mais limpo, com menos ruídos e poluição visual, tem-se resultando numa visualização mais clara das informações dispostas ao usuário.

Na terceira etapa, foram feitas automatizações no projeto, com ações nas camadas e plug-ins que facilitam a consulta das informações. Essa criação se deu com a utilização de código Python, com a atualização de códigos já existentes, com o auxílio de técnicos da divisão e com a utilização do Livro de Receitas para Programadores PyQGIS (2025).

Assim, foram criadas ações de: busca de logradouros (por meio do número do CODLOG), busca de quadras (por meio dos números de setor e quadra fiscal), busca de lotes (por meio dos números de setor, quadra e lote fiscal), busca de parcelamentos (usando o código de parcelamento, por exemplo: ARR0001), carregamento de plantas georreferenciadas e limpeza das plantas carregadas. Com isso, o número de ações foi reduzido de mais de 30, em cada um dos antigos projetos de consulta, para apenas 6, sem qualquer prejuízo nas ferramentas existentes, mas sim com ganho de eficiência na aplicação das mesmas.

Também foram elaborados três plug-ins, utilizando como base os códigos Python das ações. São eles: um para buscar e limpar plantas georreferenciadas; outro para buscar logradouros, quadras, lotes fiscais e parcelamentos; e um terceiro para abrir o formulário com informações sobre parcelamentos.

No total, foram criados 7 botões (Figura 1). O plug-in chamado "plantas_georreferenciadas" contém dois botões: (1) Carregar Plantas Georreferenciadas e (2) Limpar Plantas Georreferenciadas. O plug-in denominado "busca_geosolo" oferece acesso a quatro botões: (1) Buscar Logradouro, (2) Buscar Quadra, (3) Buscar Lote e (4) Buscar Parcelamento. Por último, o plug-in chamado "formulario" disponibiliza o botão de informações sobre parcelamentos.

Figura 1: Todos os botões criados para o novo projeto de consulta externa

Fonte: de autoria própria (2025)

Essas medidas foram implementadas no projeto com o objetivo de diminuir o número de etapas manuais necessárias, agilizando assim as consultas feitas pelos técnicos. Com o uso dos botões, o trabalho se torna mais automatizado, pois basta clicar no botão de interesse e inserir a informação desejada para que o resultado seja apresentado automaticamente.

A quarta etapa consistiu na criação de um formulário o qual integrasse as informações organizadas e obtidas por técnicos internos à divisão. Por meio do software Qt Creator, foram adicionados *widgets*, que quando relacionados a determinadas células das camadas de atributos das 8 novas tabelas criadas, formaram um formulário único, intuitivo e eficiente, contribuindo para a consulta e leitura das informações.

A administração do banco de dados é feita por meio do PostgreSQL, que possibilita o armazenamento, a organização e o controle eficiente das informações geoespaciais relacionadas ao parcelamento do solo. O acesso ao projeto QGIS, que utiliza esse banco de dados, é através da conexão direta ao PostgreSQL.

Ao carregar o projeto, o usuário é solicitado a informar suas credenciais de acesso na janela "Entre com as credenciais". Para o acesso externo, deve-se utilizar o usuário "externo" e a senha "externo". Essa ação garante o controle e a segurança no acesso aos dados.

Dessa forma, um novo ambiente de trabalho foi criado, priorizando a organização visual gráfica, a facilidade de busca geográfica, com a criação de ações e botões específicos via plug-ins, e um formulário de consolidação unificado.

PROPOSTA

A proposta consiste na elaboração de um projeto QGIS voltado à consulta externa dos dados de parcelamento do solo, com base na padronização, automação e organização relacional da base de dados geoespacial. Para garantir o uso adequado do novo projeto, foi elaborado um manual com instruções detalhadas, voltado aos técnicos que farão uso desse projeto. O manual apresenta orientações sobre como instalar os complementos e como usar as funcionalidades implementadas. Foram elaborados também vídeos-tutoriais para ampliar o acesso à todas as funcionalidades propostas.

Para efetivação e universalização do uso do projeto elaborado, será realizada uma reunião com a equipe de toda a coordenadoria, no dia 06 de agosto de 2025, para que seja apresentado o novo projeto. Em data posterior, outra apresentação *online* será realizada com técnicos de toda a PMSP. Durante a apresentação, serão apresentados os objetivos que nortearam a reestruturação do projeto, os passos que devem ser seguidos para que os técnicos tenham acesso às pastas necessárias, assim como o funcionamento dos plug-ins desenvolvidos.

Assim, faz parte do projeto a promoção de capacitação técnica para o uso da tecnologia proposta, em especial para os aqueles com dificuldade de acesso a ferramentas tecnológicas.

RESULTADOS ALCANÇADOS OU ESPERADOS

A iniciativa está em fase de implementação. A primeira melhoria identificada na fase inicial do desenvolvimento do projeto foi relacionada à organização das camadas e à apresentação da simbologia. A questão visual foi a que mais impactou no primeiro momento, como é possível observar nas Figuras 2 e 3.

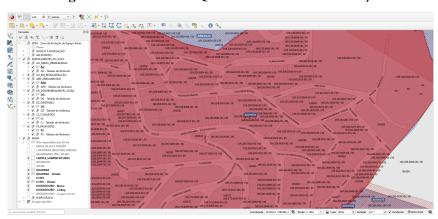


Figura 2: Interface do QGIS antes da reestruturação

Fonte: de autoria própria (2025)

Figura 3: Interface do QGIS depois da reestruturação

Fonte: de autoria própria (2025)

4,4

Também foi realizado um teste em relação ao tempo de execução, comparando o processo de busca de informações nos antigos projetos de consulta com o novo. Na Figura 4, apresenta-se uma tabela comparativa com os tempos de consulta.

Figura 4: Comparação no tempo de consulta

Tipo de Consulta

Projetos Antigos (em ") Projeto Novo (em ") Redução do tempo (em %)

Por setor, quadra e lote

15,44

8,24

46,63

11,81

Por setor e quadra

62,74

Por parcelamento	10,96	4,6	58,03
Por conjunto de parcelamento	72,24	22,85	68,37
Carregar 5 plantas georreferenciadas	50,84	9,4	81,51
Limpar 5 plantas georreferenciadas	9,69	2,06	78,74
Abrir formulário de informações	14,71	5,3	63,97
TOTAL	185,69	56,85	69,38

Fonte: de autoria própria (2025)

Para buscas por setor, quadra e lote fiscal, o tempo caiu de 15 segundos nos projetos antigos para 8 segundos no novo projeto. Nas buscas por setor e quadra fiscal, reduziu-se de quase 12 segundos para 4,4 segundos. Para a busca por parcelamento, o tempo também foi de quase 11 segundos para 5. Quando se analisa o tempo necessário para consultar um conjunto de parcelamentos - por exemplo, ARR0001, AU0001, CJ0001, AU0001, DG0001 e DZ0001 de uma vez - a mudança de tempo é drástica: de 1 minuto e 12 segundos nos projetos antigos para apenas 23 segundos no novo projeto.

Para carregar plantas georreferenciadas, utilizou-se como exemplo o carregamento de 5 plantas de um mesmo parcelamento. Anteriormente, o técnico precisava localizar o parcelamento e, na camada específica correspondente, carregar manualmente cada planta - dependendo da camada de parcelamento, havia mais de 10 ações envolvidas. Agora, basta clicar no botão "Carregar Plantas Georreferenciadas" e clicar no parcelamento que a janela para carregar as plantas aparecem automaticamente, independentemente da camada que estiver selecionada no projeto. Com isso, o tempo de execução foi reduzido de 51 segundos para 9 segundos.

Para apagar as plantas carregadas, anteriormente era necessário removê-las manualmente do projeto, uma a uma, ou utilizando atalhos de teclado (Ctrl ou Ctrl + Shift). Agora, basta clicar no botão "Limpar Plantas Georreferenciadas", e a ação é feita automaticamente. Seguindo o mesmo exemplo com 5 plantas, utilizando o atalho Ctrl, o tempo antes era de quase 10 segundos, agora, com o botão, foi reduzido para apenas 2 segundos.

Para consultar o formulário de informações nos antigos projetos, o técnico precisava clicar na camada específica do parcelamento, utilizar a ação de buscar o parcelamento e, posteriormente, clicar manualmente no ícone de identificação de feições. Após isso, era necessário clicar sobre a feição do parcelamento e, por fim, em um último ícone para abrir o formulário com as informações. Essa sequência levava, em média, 15 segundos. Com o novo projeto, o processo foi extremamente simplificado: o técnico precisa apenas clicar no botão "Informações sobre Parcelamento", inserir o código do parcelamento e, automaticamente, a

feição é centralizada no visor e o formulário é aberto. Agora, essa ação leva aproximadamente 5 segundos.

Com a automatização das ações, a reorganização das camadas e a implementação de plug-ins, o tempo total de consulta foi reduzido de 185,69 segundos para 56,85 segundos, representando uma diminuição de aproximadamente 70% no tempo de execução. Esses resultados mostram a relevância da padronização das ações por camada e da criação dos plug-ins para a otimização do fluxo de trabalho.

Para avaliar a receptividade do projeto, foi disponibilizado aos técnicos um formulário, do *Google Forms*, por meio do qual podem registrar seus feedbacks. Dessa forma, é possível identificar eventuais problemas e manter o projeto em constante atualização, para assim, atender às necessidades dos profissionais que o utilizam. Além disso, esse cuidado em obter a opinião dos servidores o qual utilizam esse projeto está alinhado ao objetivo estratégico de número 8 da Carta Brasileira para Cidades Inteligentes (2020), o qual aponta como necessária a construção de formas para avaliar e acompanhar os efeitos da aplicação de métodos para a transformação digital das cidades.

Assim, espera-se que o projeto contribua para o aprimoramento da gestão urbana, além de melhorar a qualidade dos serviços prestados à população, ao tornar mais acessíveis e organizadas as informações sobre parcelamento do solo no município.

REFERÊNCIAS BIBLIOGRÁFICAS

ARAÚJO, Douglas da Silva; GUIMARÃES, Patrícia Borba Vilar; COSTA, Ademir Araújo da. A implantação de cidades inteligentes no Nordeste brasileiro: um breve diagnóstico / The implementation of intelligent cities in the brazilian northeast: a brief diagnosis. **Revista de Direito da Cidade**, [S. l.], v. 12, n. 2, p. 1084–1104, 2020. Disponível em: https://www.e-publicacoes.uerj.br/rdc/article/view/39957. Acesso em: 17 jul. 2025.

BRASIL. **Carta Brasileira para Cidades Inteligentes**. Brasília: Ministério do Desenvolvimento Regional; Ministério da Ciência, Tecnologia e Inovações; Ministério das Comunicações; Ministério do Meio Ambiente, 2020. Disponível em: https://cartacidadesinteligentes.org.br/guia/apresentacao. Acesso em: 22 jul. 2025.

PEREIRA, Danilo Moura; SILVA, Gislane Santos. As Tecnologias de Informação e Comunicação (TICs) como aliadas para o desenvolvimento. **Cadernos de Ciências Sociais Aplicadas**, [S. l.], v. 7, n. 8, 2020. Disponível em: http://periodicos2.uesb.br/ccsa/article/view/1935. Acesso em: 14 jul. 2025.

QGIS PROJECT. **Livro de receitas para programadores PyQGIS**. 2002–[2025]. Disponível em: https://docs.qgis.org/3.40/pt_PT/docs/pyqgis_developer_cookbook/index.html. Acesso em: 07 jul. 2025.

QUEIROZ, Gilberto Ribeiro de. **Sistemas de bancos de dados geoespaciais: evolução das tecnologias de bancos de dados**. São José dos Campos: INPE, 2015. Disponível em: http://mtc-m21b.sid.inpe.br/col/sid.inpe.br/mtc-m21b/2015/06.08.20.44/doc/bd-geoespaciais.pdf. Acesso em: 14 jul. 2025.

RECK, Janriê Rodrigues; BITENCOURT. Caroline Müller. Categorias de análise de políticas públicas e gestão complexa e sistêmica de políticas públicas. A&C – **Revista de Direito Administrativo & Constitucional**, Belo Horizonte, ano 16, n. 66, p. 131-151, out./dez, 2016.

RECK, Janriê Rodrigues; VANIN, Fábio Scopel; O Direito e as Cidades Inteligentes: Desafios e Possibilidades na Construção de Políticas Públicas de Planejamento, Gestão e Disciplina Urbanística; **Revista de Direito da Cidade**, vol. 12, n.1; 2020.

ROCHA, Daniella Mariano Souza. A gestão em rede na implementação de políticas públicas: o caso do Programa Brasil Mais Produtivo. Universidade Federal do Rio Grande do Sul, Porto Alegre, 2017.

SÃO PAULO (Município). **GeoSampa – Web Feature Service (WFS)**. São Paulo: Prefeitura do Município de São Paulo, 2025. Disponível em:

https://wfs.geosampa.prefeitura.sp.gov.br/geoserver/ows?service=wfs&version=1.0.0&request=GetCapabilities. Acesso em: 14 jul. 2025.

SÃO PAULO (Município). **Lei nº 16.050, de 31 de julho de 2014**. Aprova a Política de Desenvolvimento Urbano e o Plano Diretor Estratégico do Município de São Paulo e revoga a Lei nº 13.430/2002. Diário Oficial da Cidade de São Paulo, São Paulo, 1 ago. 2014. Disponível em: https://legislacao.prefeitura.sp.gov.br/leis/lei-16050-de-31-de-julho-de-2014. Acesso em: 14 jul. 2025.

SÃO PAULO (Município). **Lei nº 16.402, de 22 de março de 2016**. Disciplina o parcelamento, o uso e a ocupação do solo no Município de São Paulo, de acordo com a Lei nº 16.050, de 31 de julho de 2014 – Plano Diretor Estratégico. Diário Oficial da Cidade de São Paulo, São Paulo, 23 mar. 2016, p. 1-16. Disponível em:

https://legislacao.prefeitura.sp.gov.br/leis/lei-16402-de-22-de-marco-de-2016. Acesso em: 14 jul. 2025.

WEISS, Marcos Cesar; BERNARDES, Roberto Carlos; CONSONI, Flávia Luciane; Cidades inteligentes: casos e perspectivas para as cidades brasileiras; **Revista Tecnológica da Fatec Americana**, vol. 05, n. 01; 2017.